The CubeSat developed at the University of Liège, BELGIUM

S. Galli(1), J. Pisane(1), P. Ledent(1), A. Denis(1), J.F. Vandenrijt(1), P. Rochus(1,2), J. Verly(1), G. Kerschen(1), L. Halbach(3)

(1) University of Liège, Liège, BELGIUM
(2) Centre Spatial de Liège, University of Liège, BELGIUM
(3) Spacebel, Liège, BELGIUM
Outline

1. University of Liège
2. Objectives
3. About D-STAR…
 • What?
 • Why?
 • How?
4. System overview
 • Ground station
 • Space segment
5. Schedule and launch
6. Conclusions
1. University of Liège (« ULg », Belgium)
2. Objectives

Primary Goal → Hands-on satellite experience for students
2. Objectives

Primary Goal

→ Hands-on satellite experience for students

Long-term Goal

→ Series of CubeSats for scientific experiments

- Granular materials (Prof. Vandewalle)
- MEMS (ULg - CSL)
2. Objectives

Primary Goal
→ Hands-on satellite experience for students

Long-term Goal
→ Series of CubeSats for scientific experiments

Short-term Goal
→ OUFTI - 1
2. Objectives

OUFTI - 1

• « Waouv ! »

• Orbital Utility For Telecomunication Innovation

• First nanosatellite from the University of Liège

• First nanosatellite ever developed in Belgium

• First CubeSat fitted with D-STAR

• Corresponding D-STAR ground station and ground repeater
3. About D-STAR...

What?

Digital Smart Technologies for Amateur Radio

- Amateur-radio digital radiocommunications protocol
- Simultaneous voice & data transmission
- Complete routing capacity, including roaming
- “Amateur radio over Internet”
- 3 frequencies and 2 data rates
 - 144 MHz (2 m, VHF), 4.8 kbit/sec
 - 440 MHz (70 cm, UHF), 4.8 kbit/sec
 - 1.2 GHz (23 cm, SHF), 4.8 kbit/sec or 128kbit/sec
- Open protocol
3. About D-STAR...

Why?

D-STAR vs. FM
3. About D-STAR…

How?

Situation 1: Users in CubeSat’s footprint

CubeSat footprint

Uplink: ~ 145 MHz
Downlink: ~ 435 MHz

User A

No repeater

Anywhere in world: Europe, US,…

User B
Situation 2: Using CubeSat and ULg repeater

Uplink: ~ 145 MHz
Downlink: ~ 435 MHz

CubeSat footprint

D-STAR zone ULg
Situation 3: Using CubeSat, ULg repeater and Internet
4. System Overview

Ground segment

ON0ULG D-STAR repeater
4. System Overview

Space segment

- Structures and mechanisms
- Power system
- Communication
- C&DH
- ADCS
- Thermal system
5. Schedule and launch

Ground station and repeater installed at ULg

Mission defined

Phase A 03.08 06.08

Phase B1

Critical elements defined

Phase B2 12.08

Leodium ready to be built

Phase C & D 06.09

Vega Maiden Flight?

07.09

Project defended at ESA/ESTEC in January 08
7. Conclusions

► **Challenging** schedule but…
 • motivated team
 • simplicity
 • strong academic and industrial support

► Unique, exciting, enriching **experience**

► **Innovative** communication system

► **Belgium’s first** D-STAR repeater

► **World’s first** D-STAR satellite
7. Conclusions

☞ www.oufti.ulg.ac.be

Thank you for your attention!

→ Questions?